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Abstract

A new data reduction technique for measuring the convective heat transfer coefficient is reported. The technique is

based on the evaluation of the Fourier transform of simultaneously measured freestream temperature and surface wall

temperature or heating power. Any wave shape can be used to heat-up the stream or the wall and the method yields

information redundancy on the local heat transfer coefficient. Effects of various uncertainties on the accuracy of the

heat transfer coefficient evaluation are considered and quantitatively analysed. A numerical simulation of the effects of

noise on the measured temperature signal is also reported and discussed.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Local convective heat transfer coefficient can be

measured by a variety of different methods. Transient

methods are widely used since many years, they are all

based on the use of the transient temperature of the

surface of a model to deduce the local heat flux and heat

transfer coefficient. The oldest and more consolidated

transient methods use a step change in the temperature

difference between the model and the surrounding fluid

(see [1,2] for a description of the principles and data

reduction techniques for those methods). One dimen-

sional heat conduction is usually assumed and it is

considered to be sufficiently accurate specially when the

surface has low thermal diffusivity (like for plexiglass or

similar materials), in fact, in this case the surface tem-

perature response is limited to a thin layer near the

surface and lateral conduction is negligible. The main

difficulty in such methods was to accomplish the fluid

temperature change relative to surface temperature and

many techniques were developed to overcome it, like

using switching valves to rise the temperature of the fluid

[1–5], preheating the model and inserting it suddenly
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into place across a channel [6] or initiating the flow using

a diverting door [7], removing a shield blocking a heated

flat surface from an impinging jet [8].

Von Wolfersdorf et al. [9] introduced a new tech-

nique that did not require direct measurements of heat

flux and wall temperature, the heat transfer coefficient

was deduced from two time measurements and sug-

gested the applicability of more than one heat step to

obtain redundancy information, then firstly proposing a

sort of periodical technique.

A new type of transient methods was introduced by

Baughn et al. [10] where the freestream temperature was

periodical heated while the local surface temperature of

a model was measured. The local heat transfer coeffi-

cient could be determined from the frequency of the

periodic change in the freestream temperature, the ratio

of the surface temperature changes to the freestream

temperature change and model thermal properties. This

method avoided the main difficulty of the transient step

methods above described. More recently [11] a periodic

technique based on the measurement of the phase lag

between model surface temperature and surface heating

power was introduced. In this case absolute temperature

measurements are not required and only phase mea-

surements are necessary, which are usually affected by

lower experimental errors.

The present paper introduces a new possibility of

measuring heat transfer coefficient by periodic varying
ed.
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Nomenclature

a, A, b, B constants

cp specific heat

h convective heat transfer coefficient

Im imaginary part of a complex value

k thermal conductivity

L slab thickness

q heat flux

Re real part of a complex value

T temperature

t time

x position

w wall surface

Greek symbols

a thermal diffusivity

D absolute uncertainty

e relative uncertainty

g fluctuating component of the heat transfer

coefficient

h temperature fluctuation

n non-dimensional position

q density

r noise intensity

s non-dimensional time

/ phase lag

u heat flux fluctuation
_UU heating power fluctuation

x0 frequency

x non-dimensional frequency

Indexes

a time average

g freestream

1 values at x ¼ L
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either the gas temperature or the surface heating power

with no imposition about the wave shape and obtaining

redundancy information about heat transfer coefficient

on a single experiment.
2. Theoretical background

Consider the one-dimensional time dependent con-

duction in a homogeneous slab of finite thickness L, the

heat equation is:

oT
ot

¼ a
o2T
ox2

ð1Þ

where a ¼ k=qcp is the thermal diffusivity. With the

usual positions: n ¼ x=L, s ¼ ta=L2, Eq. (1) becomes

oT
os

¼ o2T

on2
ð2Þ

Let us first consider the case when the freestream tem-

perature varies with time, described by the following

boundary conditions

n ¼ 0 : qð0; sÞ ¼ h½TgðsÞ � T ð0; sÞ�
n ¼ 1 : qð1; sÞ ¼ 0

ð3Þ

where TgðtÞ is the temperature of the gas stream in

contact with the slab surface at x ¼ 0, h is the convec-

tive heat transfer coefficient and qðn; sÞ ¼ �k oT ðn;sÞ
ox ¼

� k
L

oT ðn;sÞ
on is the heat flux. The second of (3) represents the

adiabatic condition at x ¼ L. Let now decompose the

gas and wall temperature in steady and fluctuating parts

as:
TgðsÞ ¼ Tg;a þ hgðsÞ
T ðn; sÞ ¼ TaðnÞ þ hðn; sÞ

ð4Þ

where Tg;a ¼ lim�!1
1
�

R �

0
TgðsÞds; TaðnÞ ¼ lim�!1

1
�

R �

0
T ðn; sÞds and the heat flux as:

qðn; sÞ ¼ qaðnÞ þ uðn; sÞ ð5Þ

where qaðnÞ ¼ lim�!1
1
�

R �

0
qðn; sÞds. Consider now the

Fourier transforms of the gas and wall fluctuating

temperature defined as

hðn; sÞ ¼
Z þ1

�1
eixsSðx; nÞdx

hgðsÞ ¼
Z þ1

�1
eixsGðxÞdx

ð6Þ

and for the heat flux

uðn; sÞ ¼
Z þ1

�1
eixsF ðx; nÞdx

where x is a non-dimensional number related to the

dimensional frequency x0 through the relation:

x ¼ x0L2=a. Solving (2) by using the first of Eq. (6)

ixSðx; nÞ ¼ o2Sðx; nÞ
on2

ð7Þ

from which

Sðx; nÞ ¼ S�ðxÞE�ðx; nÞ þ SþðxÞEþðx; nÞ ð8Þ

where E�ðx; nÞ ¼ e�ð1þiÞ
ffiffiffiffiffiffi
x=2

p
. The heat flux inside the

slab is then
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F ðx; nÞ ¼ k
L
ð1 þ iÞ

ffiffiffiffi
x
2

r
½S�ðxÞE�ðx; nÞ � SþðxÞEþðx; nÞ�

ð9Þ

Applying the boundary conditions (3) one obtains for

the steady components:

TaðnÞ ¼ Tg;a

qaðnÞ ¼ 0
ð10Þ

and for the fluctuating components

SþðxÞ ¼ S�ðxÞE�ðx; 1Þ
Eþðx; 1Þ ð11Þ

k
L
ð1 þ iÞ

ffiffiffiffi
x
2

r
½S�ðxÞ � SþðxÞ�

¼ h½GðxÞ � S�ðxÞ � SþðxÞ� ð12Þ

substituting (11) in (12) and putting Bi ¼ hL=k

ð1 þ iÞ
ffiffiffiffi
x
2

r
S�ðxÞ 1

�
� E�ðx; 1Þ
Eþðx; 1Þ

�

¼ Bi GðxÞ
�

� S�ðxÞ 1

�
þ E�ðx; 1Þ
Eþðx; 1Þ

��

Now, from Eqs. (8) and (11)

Sðx; 0Þ ¼ S�ðxÞ 1

�
þ E�ðx; 1Þ
Eþðx; 1Þ

�
ð13Þ

defining the function QðxÞ by

QðxÞ ¼ Eþðx; 1Þ � E�ðx; 1Þ
Eþðx; 1Þ þ E�ðx; 1Þ ð14Þ

one obtains

GðxÞ ¼ Sðx; 0Þ ð1 þ iÞ
Bi

ffiffiffiffi
x
2

r
QðxÞ

�
þ 1

�
ð15Þ

Observing that

ð1 þ iÞQðxÞ ¼ ½QrðxÞ � QiðxÞ� þ i½QrðxÞ þ QiðxÞ�
¼ K�ðxÞ þ iKþðxÞ ð16Þ

with QrðxÞ¼ReðQðxÞÞ and QiðxÞ¼ ImðQðxÞÞ, K�ðxÞ¼
½QrðxÞ�QiðxÞ�; from Eq. (15) it is possible to obtain

Re½Sðx; 0ÞG�ðxÞ� ¼ jSðx; 0Þj2

Bi
Bi

�
þ

ffiffiffiffi
x
2

r
K�ðxÞ

�

Im½Sðx; 0ÞG�ðxÞ� ¼ � jSðx; 0Þj2

Bi

ffiffiffiffi
x
2

r
KþðxÞ

� �

with G�ðxÞ complex conjugate of GðxÞ. Finally

W ðxÞ ¼ Re½Sðx; 0ÞG�ðxÞ�
Im½Sðx; 0ÞG�ðxÞ� ¼ � Biffiffiffi

x
2

p
KþðxÞ

(
þ K�ðxÞ
KþðxÞ

)

or

Bi ¼ �
ffiffiffiffi
x
2

r
fK�ðxÞ þ KþðxÞW ðxÞg ð17Þ

Eq. (17) gives a relation that allows to evaluate Bi (and

then the local convective heat transfer coefficient) from

the Fourier transform of the wall surface temperature

and the gas temperature. It should be noticed that,

defining the freestream–wall temperature crosscorrela-

tion:

CðsÞ ¼
Z þ1

�1
hð0; t þ sÞhgðtÞdt

the convolution theorem for Fourier transform (see, for

example [12,13]) gives

CðsÞ ¼
Z þ1

�1
eixsSðx; 0ÞG�ðxÞdx

thus W ðxÞ can also be evaluated from the real and

imaginary components of the Fourier transform of CðsÞ.
Let now consider the case when the freestream tem-

perature remains constant and heat generation takes

place in a thin layer positioned at x ¼ 0, which models

the case when a thin heater foil is attached to the surface.

This case is described by the following boundary con-

ditions:

n ¼ 0 : _QQw ¼ _QQw;a þ _UUwðsÞ ¼ h½T ð0; sÞ � Tg� þ qð0; sÞ
n ¼ 1 : qð1; sÞ ¼ 0

ð18Þ

where _QQwis the power generated per surface unit into

the thin layer (which is supposed to be at uniform

temperature equal to T ð0; sÞ), _QQw;ais the time average:
_QQw;a ¼ lim�!1

1
�

R �

0
_QQwðsÞds; and _UUwðsÞ the fluctuating

component. Introducing the Fourier transform of _UUwðsÞ:

_UUwðsÞ ¼
Z þ1

�1
eixsWðx; nÞdx

and applying the boundary conditions (18) one obtains

for the steady components

TaðnÞ ¼ T0 ! qaðnÞ ¼ 0

_QQg ¼ h½T0 � Tg�
ð19Þ

and for the fluctuating components

WðxÞ ¼ k
L
ð1 þ iÞ

ffiffiffiffi
x
2

r
½S�ðxÞ � SþðxÞ� þ h½S�ðxÞ þ SþðxÞ�

ð20Þ

Using again Eq. (11) (obtained from the boundary

conditions at n ¼ 1):

WðxÞ ¼ k
L
Sðx; 0Þ Bi

�
þ ð1 þ iÞ

ffiffiffiffi
x
2

r
QðxÞ

�
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where again Bi ¼ hL=k and QðxÞ is defined by Eq. (14).

It is now straightforward to obtain the relation similar

to Eq. (17):

Bi ¼ �
ffiffiffiffi
x
2

r
K�ðxÞf þ KþðxÞWWðxÞg

with now

WWðxÞ ¼ Re½Sðx; 0ÞW�ðxÞ�
Im½Sðx; 0ÞW�ðxÞ�

where W� is the complex conjugate of W. As for the

previous case, defining the temperature–power cross-

correlation

CWðsÞ ¼
Z þ1

�1
hð0; t þ sÞ _UUwðtÞdt

the convolution theorem for Fourier transform gives

CWðsÞ ¼
Z þ1

�1
eixsSðx; 0ÞW�ðxÞdx

thus also WWðxÞ can be evaluated from the real and

imaginary components of the Fourier transform of

CWðsÞ.
As the two cases are so similar, in the following

sections only the first one (varying freestream tempera-

ture) will be analysed and all the results are readily ap-

plicable to the second one.
3. Effect of time dependence of the convective coefficient

It was shown [14] that in transient methods the heat

transfer coefficient may vary with time. To explicitly

show this dependence in case of periodic regime, con-

sider the boundary condition (3), where each parameter

was split into steady and fluctuating parts (see Eqs. (4)

and (5))

qað0Þ þuð0; sÞ ¼ ½ha þ gðsÞ�½Tg;a þ hgðsÞ � Tað0Þ � hð0; sÞ�
ð21Þ

with hðsÞ ¼ ha þ gðsÞ and ha ¼ hhðsÞi, brackets h i indi-

cate the time average: hf i ¼ lim�!1
1
�

R �

0
f ðsÞds.

Taking the average of each side of Eq. (21)

qað0Þ ¼ ha½Tg;a � Tað0Þ� þ hgðsÞ½hgðsÞ � hð0; sÞ�i ð22Þ

Consider now the case of fluctuating gas temperature

and adiabatic condition at x ¼ L (but a similar discus-

sion can be done for other boundary conditions), then

qað0Þ ¼ 0, which implies

Tg;a � Tað0Þ ¼ � hgðsÞ½hgðsÞ � hð0; sÞ�i
ha

ð23Þ

i.e., due to the correlation between fluctuating temper-

ature and heat transfer coefficient, the average wall and
gas temperatures will differ by an amount depending on

the characteristics of the fluctuating fields.

Inserting Eq. (22) in (21)

uð0; sÞ ¼ ha½hgðsÞ � hð0; sÞ� þ fgðsÞ½Tg;a � Tað0Þ�
þ gðsÞ½hgðsÞ � hð0; sÞ� � hgðsÞ½hgðsÞ � hð0; sÞ�ig

ð24Þ

the last term in brackets is the addition due to the time

dependence of the heat transfer coefficient. For the case

under consideration it can also be written as

/ðsÞ ¼ ½ha þ gðsÞ�½Tg;a � Tað0Þ� þ gðsÞ½hgðsÞ � hð0; sÞ�

Now, to estimate the weight of /ðsÞ respect to

ha½hgðsÞ � hð0; sÞ� in Eq. (24), the amplitude of the co-

efficient fluctuation and the correlation between coeffi-

cient and temperature fluctuations should be known. To

the author knowledge, there not exist available experi-

mental or numerical results on such effect (as the results

reported in [14] were obtained for transient non-periodic

heating); it can only be speculated that the effect of time

variation of the convective coefficient may be smaller for

turbulent boundary layer than for the laminar one as

this happens for the transient non-periodic case [14].

Due to this lack of knowledge, in the rest of this paper

such possible effect will be neglected, and it should be

noticed that practically all the commonly used methods

to evaluate the heat transfer coefficient with transient

methods rely on the assumption that heat transfer co-

efficient is not influenced by the temperature unsteadi-

ness.
4. Uncertainties and sensitivity analysis

There may be various sources of uncertainty when

extracting the value of Bi from measured spectra. First

of all, Eq. (17) shows how an error on the evaluation of

W ðxÞ will produce an error in evaluating Bi. Precisely,

the relative error (eðW Þ
Bi ) on Bi will be related to the rel-

ative error (eW ) on W as

eðW Þ
Bi ¼ W

Bi
dBi
dW

eW ¼ 1

�
þ

ffiffiffiffi
x
2

r
K�ðxÞ
Bi

�
eW

and Fig. 1 shows the ratio eðW Þ
Bi =eW as a function of x

and Bi. It is then evident that there exists a sort of

‘‘frequency threshold’’ for each value of Bi above which

the errors in evaluating Bi grows rapidly and Fig. 2 re-

ports the values of W for which eðW Þ
Bi =eW ¼ 2, for a wide

range of Bi. This effect can also be appreciated through

Fig. 3, showing the values of W as a function of x for

different values of Bi. The threshold is there defined by

the line on which all curves collapse.

Another source of error can be related to the uncer-

tainty on the measurement of wall thickness or wall



Fig. 1. Ratio of relative errors on Bi and W as a function of

non-dimensional frequency x and Bi.

Fig. 2. Frequency threshold for errors due to uncertainty on

evaluating W from Fourier transform (eðW Þ
Bi =eW ) and uncertainty

on evaluating x from material properties (eðxÞ
Bi =ex).

Fig. 3. The ratio �W ¼ � RefSðx;0ÞÞG�g
ImfSðx;0ÞÞG�g vs. non-dimensional fre-

quency x.

Fig. 4. Plot of Bi vs. x for different values of W (Eq. (3.15)).
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thermal properties. Again the separate effects of those

sources can be evaluated through the relation

eðxÞ
Bi ¼ x

Bi
dBi
dx

ex

where ex is the relative error on x due to uncertainties in

evaluating a or L, then ex ¼ �ea or ex ¼ 2eL where ea

and eL are the relative uncertainties on a and L respec-

tively. Fig. 4 shows the relation BiðxÞ for different values

of W (Eq. (17)); it can be appreciated how there exists

values of x for which the derivative dBi=dx, and then

eðxÞ
Bi , is nil. Around that region the method is insensitive

to uncorrect evaluation of x (i.e. of a and L). Fig. 5

shows the values of eðxÞ
Bi =ex and again the existence of a

frequency threshold (depending on the value of Bi)
above which errors may become too large. Fig. 2 reports
also the values of x for which eðxÞ
Bi =ex ¼ 2, for a wide

range of Bi; it can be appreciated how this constraint is

weaker than that imposed by the uncertainty on the

values of W .

The measured temperatures may also be affected by

random noise, produced by the devices used to acquire

the signals, and this affects the signals Fourier trans-

forms and then the evaluation of Bi. But there may be

other causes like the fact that the slab is never perfectly

adiabatic in x ¼ L and this may introduce a deterministic

bias on Bi evaluation. These sources of error will be

analysed here as they are certainly among the most

significant ones that may bias the evaluation of Bi.

4.1. Random noise

To better analyse the effect of random noise super-

imposed to the actual measured temperature values,

a numerical simulation was implemented. A finite



Fig. 5. Ratio of relative errors on Bi and x as a function of

non-dimensional frequency x and Bi.
Fig. 7. Freestream temperature with superimposed a white

noise (rg ¼ 0:02).
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differences discretisation and explicit method were used.

Tests where performed to check the accuracy, non-

dimensional frequency x was varied in a wide range

(10�3–10) as well as the imposed value of Bi (10�4–10).

Accuracy depends on both parameters, numerical errors

in evaluating Bi by the procedure above described in-

creases when Bi decreases and x increases (see Fig. 6 for

an example). However, a proper choice of other pa-

rameters like the mesh size and the time step can always

improve the accuracy to the desired value, obviously

increasing the computational time. The analysis of the

random noise effects was performed with parameters set

in order to get a computational error in evaluating the Bi
form spectra (Eq. (17)) always lower than 10�4. White

noises of different intensities were added to the free-

stream and wall temperature signals and the resulting

time series were used to compute Fourier transforms and
Fig. 6. Uncertainty on evaluating Bi from numerical simulation

due to computational errors.
to evaluate Bi. The deterministic freestream temperature

signal was a periodic linear ramp (see Fig. 7). The added

disturbances were white noises (random noise with

Gaussian distribution) and their intensities (the rms of

the distributions: rg for the freestream and rw for the

wall surface) were varied between 0 and 0.32 times the

signal amplitude for both freestream and wall tempera-

ture signal. Due to information redundancy, Bi can be

evaluated taking the average of values relative to many

frequencies but accuracy decreases strongly when x in-

creases above the threshold previously mentioned

(which depends on Bi), Fig. 8 shows a result of the nu-

merical simulation (for Bi ¼ 0:1): the value of the ratio
Bimeas

Bith
(where Bimeas is the calculated value of Bi whereas

Bith is the correct one) is plotted vs. the non-dimensional

frequency x and it remains close to 1 only for x < 0:1.

Fig. 9 shows the results of the simulations in terms of the
Fig. 8. Dependence of Bi
Bith

on non-dimensional frequency x.



Fig. 9. Effect of random noise on accuracy in evaluating Bi.
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effect of random noise on the relative error in valuating

Bi (again for Bi ¼ 0:1). eðrÞBi was calculated as: eðrÞBi ¼
j �BBiBi � 1j where �BBi is the average taken over all the values

for x < 0:1. It is interesting to observe that the resulting

relative error is comparatively confined and it can be

strongly diminished by using lower x, for example: by

using only the values of Bi for x < 0:05 the relative error

eðrÞBi was always lower than 0.02 for all the range of rg and

rw above mentioned.

4.2. Non-adiabatic slab

In this case the boundary conditions become

n ¼ 0 : qð0; sÞ ¼ h½TgðsÞ � T ð0; sÞ�

n ¼ 1 : qð1; sÞ ¼ h1ðT ð1; sÞ � Tg1Þ

where Tg1 is the (constant) temperature of the fluid in

contact to the wall at x ¼ L and h1 is the convective heat

transfer coefficient. These constraints impose on the

steady components the following conditions (to be

compared to Eq. (10)):

qaðnÞ ¼ const: ¼ DTg

RL

TaðnÞ ¼ aþ bn
ð25Þ

where DTg ¼ Tg � Tg1, RL ¼ ð1
h þ L

k þ 1
h1
Þ, a ¼ Tg1 þ

DTg

ð 1
h1
þL

kÞ
RL

, b ¼ �DTg
L

kRL
: The boundary condition in

n ¼ 1 gives, for the Fourier transform of the fluctuating

components

k
L
ð1 þ iÞ

ffiffiffiffi
x
2

r
½S�ðxÞE�ðxÞ � Sþðx; 1ÞEþðx; 1Þ�

¼ h1½S�ðxÞE�ðx; 1Þ þ SþðxÞEþðx; 1Þ�

where Eq. (25) were used, and then

SþðxÞ ¼ S�ðxÞE�ðx; 1Þ
Eþðx; 1ÞHðx;Bi1Þ ð26Þ
with Bi1 ¼ h1L
k , and

Hðx;Bi1Þ ¼
2

ffiffiffi
x
2

p
� Bi1ð1 � iÞ

2
ffiffiffi
x
2

p
þ Bi1ð1 � iÞ

ð27Þ

Eq. (26) should be compared to (11), noticing that

Hðx; 0Þ ¼ 1.

The boundary condition in n ¼ 0 becomes now:

GðxÞ ¼ Sðx; 0Þ ð1 þ iÞ
Bi

ffiffiffiffi
x
2

r
Q1ðx;Bi1Þ

�
þ 1

�

where

Q1ðx;Bi1Þ ¼
Eþðx; 1Þ � E�ðx; 1ÞHðx;Bi1Þ
Eþðx; 1Þ þ E�ðx; 1ÞHðx;Bi1Þ

ð28Þ

and then

Bi ¼ �
ffiffiffiffi
x
2

r
fK�

1 ðx;Bi1Þ þ Kþ
1 ðx;Bi1ÞW ðx;Bi1Þg ð29Þ

with K�
1 ðx;Bi1Þ ¼ ½ReðQ1ðx;Bi1ÞÞ � ImðQ1ðx;Bi1ÞÞ�.

Again, Eq. (29) should be compared to Eq. (17), valid

for the adiabatic case.

It is now possible to evaluate the relative error ob-

tained evaluating Bi by using Eq. (17) instead of (29):

ena ¼
Bierr

Bi
� 1 ¼ fK�ðxÞ þ KþðxÞW ðx;Bi1Þg

Bi
� 1 ð30Þ

with W evaluated from Eq. (29): W ðx;Bi1Þ ¼
�
n

Biffiffi
x
2

p
Kþ

1
ðx;Bi1Þ

þ K�
1
ðx;Bi1Þ

Kþ
1
ðx;Bi1Þ

o
.

Fig. 10 shows the dependence of this uncertainty to

x, Bi and Bi1. The asymptotic value for x ! 0 can be

evaluated (see Appendix A) obtaining

lim
x!0

ena ¼ b
½2bBi2 þ 3Bið1 þ bÞ þ 3�

ðb2Bi2 þ 3bBiþ 3Þ
ð31Þ

with b ¼ Bi1
Bi and Fig. 11 shows such dependence. It is

clear that errors become small for larger values of x
(where, however, the other types of uncertainties become

large, see Fig. 1 for example) as in such case the adia-

batic slab condition is approached (Hðx;Bi1Þ ! 1). For

small values of x, the uncertainty due to the non-adia-

batic condition is given by Eq. (31) and becomes large

for Bi larger than about 0.5.

As a result of this analysis, it appears that, in order to

minimize the sources of errors, the non-dimensional

frequency x should be maintained in the region indi-

cated in Fig. 2 and that Bi should not be too small but

kept smaller than 0.5 (through a proper choice of ma-

terial properties and slab thickness).
5. The case of sinusoidal varying temperature

Consider the case when the gas temperature is peri-

odically varied with: TgðtÞ ¼ A sinðx0tÞ. The solution can



Fig. 10. Effect of non-adiabatic slab on accuracy in evaluating Bi.

Fig. 11. Limit for x ! 0 of the error due to non-adiabatic slab

condition.
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be obtained as a particular case of the general problem

above analysed by setting: RefGg ¼ 0, ImfGg ¼
�Adðx � x0Þ, where dðxÞ is the Dirac–delta function,

and taking the real part of the solution, then
Sr ¼ Re Sðx; 0Þf g

¼ �KþðxÞ

Biffiffi
x
2

p þ K�ðxÞ
� �2

þ fKþðxÞg2

Adðx � x0Þ

¼ Zrdðx � x0Þ

Si ¼ ImfSðx; 0Þg

¼
� Biffiffi

x
2

p þ K�ðxÞ
� �

Biffiffi
x
2

p þ K�ðxÞ
� �2

þ KþðxÞf g2

Adðx � x0Þ

¼ Zidðx � x0Þ

Now the solution for the surface temperature is

T ð0; tÞ ¼ Re

Z þ1

�1
eixtSðx; 0Þdx

� �
¼ Zr cosðxtÞ � Zi sinðxtÞ ¼ sinðxt þ /Þ

where

tanð/Þ ¼ � Zr

Zi

¼ � Kþðx0Þ
Biffiffiffiffi

x0
2

p þ K�ðx0Þ
� �
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from which the relation for sinusoidal varying gas tem-

perature can be recovered

Bi ¼ �
ffiffiffiffiffiffi
x0

2

r
K�ðx0Þ 1

�
þ Kþðx0Þ
K�ðx0Þ

tan�1ð/Þ
�

which generalises, to the case of finite thickness slab, the

well-known equation (valid for semi-infinite solid)

h ¼ �k

ffiffiffiffiffiffi
x0

0

2a

r
f1 þ tan�1ð/Þg

The above uncertainty analysis can be easily applied to

this particular case too. It should be noticed that a

similar result can be obtained for the case of constant

freestream temperature and surface heat generation

where _UUwðsÞ ¼ B sinðx0sÞ.
6. Conclusions

The proposed data reduction technique would allow

to measure the convective heat transfer coefficient

through the evaluation of the Fourier transform of si-

multaneously measured freestream and surface wall

temperatures (or heating power and surface tempera-

ture). Any wave shape can be used to heat-up the stream

(or the wall surface) and the method yields information

redundancy on heat transfer coefficient, giving the pos-

sibility of checking the consistency of the results. The

sensitivity analysis shows that, to reduce uncertainties,

the non-dimensional frequency should be kept below a

threshold value which depends on the range of the co-

efficient to be measured and this can be obtained by

proper choices of the slab thickness and material and

freestream heating period. The effect of noise on the

measured temperature signals does not appears to be

critical, as far as the signal to noise ratio is high. The

effect of non-adiabatic back surface can become critical

for large values of Bi but it can again be controlled by a

proper choice of the slab material and thickness.
Appendix A

Substituting the value of W obtained from Eq. (29)

into Eq. (30):

e1 ¼
Bierr

Bi
� 1 ¼

�
ffiffiffi
x
2

p
fK�ðxÞ þ KþðxÞW ðx;Bi1Þg

Bi
� 1

¼
�

ffiffiffi
x
2

p
K�ðxÞ þ KþðxÞ

Kþ
1
ðx;Bi1Þ

Biþ
ffiffiffi
x
2

p
K�

1 ðx;Bi1Þ
n o

� Bi

Bi

the limit for x ! 0 can be evaluated. In fact

lim
x!0

ffiffiffiffi
x
2

r
K�ðxÞ ¼ 0

and
lim
x!0

ffiffiffiffi
x
2

r
K�

1 ðx;Bi1Þ ¼
Bi1

1 þ Bi1

and

lim
x!0

KþðxÞ
Kþ

1 ðx;Bi1Þ
¼ 3ðBi1 þ 1Þ2

ðBi21 þ 3Bi1 þ 3Þ

obtained applying repeatedly De L�Hospital rule. Then,

introducing b ¼ Bi1
Bi :

lim
x!0

e1 ¼ b
½2bBi2 þ 3Bið1 þ bÞ þ 3�

ðb2Bi2 þ 3bBiþ 3Þ

that, for small values of Bi becomes equal to b.
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